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Abstract

The anaiysis of open-loop balanced flexible structures has
been extendd for closed-loop structures. 1.QG compensalor gains
(i.c., thc gains of a . controller and of an estimalor) are
obtained from the solutions of the controller Riccati equation
(CARE) and the estimator Riccati equation (FARE), For the
balanced compensator the solutions of CARE and FARI arc equal
and diagonal. Thus, a balanced 1.QG compensator puts the same
effort  imo control and estimation of the system.,  An
approximate balanced 1 .QG compensator for flex ible stractures is
determined in this paper. Its properties allow one to obtain a
reduced-orctcr  compensator, which preserves the stabilily and
performance of the full-order compensator. The performance of
an 1.QG compensator depends on the weights of the quadratic
performance index and on the variance of the estimator noise.
The 1clationships between weights/variances a n d  characteristic
values of the system as well as between weights/varian ces and
plant/estimator pole localion are derived in this paper. Thus
the weights can be determined in advance tomeet the
requirements of a closed-loop system.

1. Introduction

Control  issues for flexible structures have  gained
increasing  atlention, especially in space applications. The
growing interest reflects recent  efforls 1o maintain - high

precision positioning of ever lighter and more flexible
structures, This paper contiibutes 10 Ibis effort by developing
a balanced 1 QG compensator for flexible stiuctures. There have
been many investigations into analysis and design of 1.QG
compensalors, and a good insight into the variety of approaches
can be oblained from Kwakernaak and Sivan (197?), Macicjowski
(1989), Anderson and Moore (1990), and Furuta and Sano (1988).
The 1.QG design procedures yield an optimal compensator.
However, an optimal solution is not necessarily a reasonable
one, since it is dependent on the weights of the quadratic
performance index and on the variance of the estimator noise.
‘I’bus, the index weight and filter covariance need to be pre-
deterinined in order to obtain a reasonable performance. ‘The
relationships between  weig,his/variances  and  characteristic
values of the system, as well as between weights/variances and
plant/cstimator pole location, arc derived in ibis paper,
making possible the design of an optimal compensator that
satisfies the requirements.

I'he controller and estimator gains of an 1.QG compensator
arc obtained from the solutions of the controller Riceati
equation (CARE) and the estimator Riccati equation (FARE). In
the approach presented, the equal and diagonasolution of CARE
and FART is sought. The. equal and diagonal solution of CARE and
I'ARE is the balanced 1.QG solution, and its diagonal ¢ntries are
the characteristic values of the system (Jonckhecre a n d
Silverman, 1983). Jonckheere and Silverman show for a specific
case that the balanced J QG solulion exists. in this paper the
transformation to the balanced | QG representation is derived
for the gencral case, It is also shown that flexible structures
in a Moore balanced representation (Moore, 1981; Gawrsonski and
Juang, 1990; Gawronski and William, 1991) arc approximately
1 QG balanced. Inthe 1.QG balanced representation a balanced
performance is oblained for a controller and an estimator. Thus
the action of a highly efficient controller is not deteriorated
by poor estimator accuracy, nor on ihe other hand is it
overdetermined by an overperforming estimator.

The 1 .QG balanced representation is used for compensator
reduction. The pole mobilily index characterizes the importance
of the closed loop component of the compensator. The states
with small mobility index arc truncated, leaving a closed-loop
system with a stable reduced compensator.

2. 1.QG Compensator

In this paper a flexible structure is defined as a
controllable and observable linear system with distinct complex
conjugale pairs of poles (Npoles, N is even), and with small
and negative real parts off tie poles. in other words, il is a
linear system with vibrational propertics. | n  the Moore
balanced coordinates il consists of # = N/2 components {Gawronski
and Juang, 1990; Gawronski and Williams, 1991, and each
component consists of two slates.

J et (A, B,C)bc a stale-space triple of a flexible
structure. |ts controllability and obscrvability grammians W,
and W, arc positive-definite and satisfy the Lyapunov equations

AW, tWAT4BID =0, AW AWALCCH= 0 @
The system representation is balanced in the sense of Moore
(C. f,, Moore, 1981 ) if its controllability and observability
grammians are diagonal and equal

W.=W, =12, T=diagfe,...,ynhi=1.... N )

where %;>0 is the ith Hankel singular value of the system,

Consider a flexible structure with an 1.QG compensator as in
Fig. 1. The noises v and w are uncoriclated, where. v is the
process noise wilh intensity V, and w is measutcinent noise with
intensity W

V= E(w'), w= E(W"ﬂ‘),l:‘(vw") =0, A'(V)=- o, E(W)= o (&)

where Ef.) is an expectation operator. It is assumed that W=:/
withoul loss of generality. The task is to determine the
controller gain (A},’,) and estimalor gain (K<) such that the
performance index

J2= 1;[ J‘(J;1 oxiu' l\’u)(lt] 4
1]

is minimal, where A’ is a positive definite inpul weight matrix,
and ( a positive scnji-definite state weight matrix. 1t s
assunied K= 1 without loss of generality.

The minimum of J is obtained for the feedback u=--K x, where.
the gain matrix

X, =105, (®)
is oblained from the solution § of the controller Riccati
equation (CARE)(Kwakernaak and Sivan, 1972)
A1 S4.581184 Q- 0 ©)
The optimal estimator gain is given by
K. = pCt, )



where 1 is the solulion of the estimalor Riccali

("AI{I)

equation
APA PAY-PCICPA V=0. (8)

3. Balanced 1QG Compensator

The balancing of CARE and FARE equalions is considered.
Jonc&hccrc and Silverman (1983), and Opdenacker and Jonckheere
( 1985) have ghown thial a balanced solution for CARE and FARTY
cquations exisls in case of Q= CVC and V= BH', Namely, there
cXisls a diagonal positive definite M= diag(w) , i=1,..., n,
1, >0, such that

S=P=M 9)
A slate-space representation with the condition (9) satisfied
is called an 1.QG balanced representation, and ,,i=1,...,n are
the characteristic vatues of (4, B, C).
Consider the transformation 7° of the slate x such that
X= Ix, then A=-13A7, B=1"B, {= Cr1; in the new coordinates
5.=18.1, O.=1v0Q.7, ;=1 1871, O patr (1(r)
The solution of CARE and FARE is 1.QG balanced if
S\.: Sr" M, M“di(lg(l'l.llz;---.""), “I?“Z?"'t“n>0 (11)

There exists a transformation 7, such that CARE and FARE arc
balanced.

Result The transformation 7 to the L.QG balanced
representation is obtained as follows. Decompose S, and S;
S.=rtp,  s=rg (12)
and form a matrix H
H= PP, (13)

Findthe singular valuc decomposition of #

H= Wn (14)
then
7 l"UH 1’2;‘1..l‘M|I2, Tley 12 Vl‘lnc z Ml/}[[lvrrl (15)
The introduction of the above transformation 7¢ 10 (10) shows
that (11) is satisfied.

Now consider weighting malrices of special form, and the
cortesponding balanced  solution.

Result 2, For a folly controllable system, and the weights @
and ; as follows

Q.= WIBI RDIW,L, Q=W C (14 RA)JCW;) (16)

onc obtains CARE and FARE solutions as follows
S=W!, S=w)! (17)

Proof. Introduction of Egs. (16) and (17) 10 CARE gives
AVS, A S A4S BBS - o (18)

which is the Lyapunov equation (1) for S.= W', Similar proof
can be shown forthe FARE solution. o

The weights as in Eq.(16) arc for collocated sensors and
acluators, and penalize each openloop balanced  state
reciprocally 1 0 its deprec o f controllability  and
observability, trying to make each state of plant and estimator
equally influenced by the feedback.

Corollary 1. Inthe Moore balanced representation W, =W, =12,
thus for weights Q,, @, as in lq.(16) one oblains an 1.QG
balanced system, with M=-y-2,

The matrix n

W= r202= diag(n) = diag(v2/v2,) (19
is the ratio of open- and closed loop Hankel singular values,
or the ratio of open- and closed loop slate variances excited

by the while noise input, Thus Il represents the closed-loop
Performance. For weights as in Result 2, and a system in the
Moore balanced coordinates one. oblains

Corollary 2, In the Moore balanced representation, for weights
as in (16)

n= 31 (20)

Proof.  ‘rhc  lyapunov  equalion for the

‘rt A closed-loop
controllability grammian W, is as follows

(A-BIVS )W, A W (AV-S.BIY) 4 BR'- O Q1a)

According, to (17) §,:1;2, and introducing W,=12/3 to(21a), one

obtains

A2 24T | BV = © @tb)

which  shows  that W= 12/3 is a solution of

(21a), and
consequently thatli= 3/.n

Result 3. ¥or a folly controllable system, and the weights
and Q; as follows

O, = CCHWRR W, O = BBTA W.CRICW, 2?)
onc obtains CARE and FARE solutions as follows
S= W Seow, (23)
Proof. By introduction of (22) to CARE and FARY equations.
Corollary 3. in the Moore balanced representation W= W =172,
thus for weights ., 0 as in Eq.(22) one obtains an 1.QG
balanced system, with M= 12,
Define Ch= [CVW,BRY2), Bo=|8 W, C'R{"], thenthe LQG
closed-loop systtmisinierpreted as a system with unitary

weights and withthe auxiliary inputs and outputs as defined by

matrices B, co. For collocated sensors and actualors, and for
K.z Ri= 1, one obtains Ci= B = [I WB= I W ](V and Q.=Q,.

4. Approximately Balanced 1.QG Compensator

Inthe following sections an approximate equality between
iwo variables is used in the following sense. Two variables x
and y are approximately equal (x=y)if x=y4e, and nel/iylcl.

It will be shown that for flexible structures the balanced
representation (in the Moore sense) produces diagonally
dominant solutions of CARE and FARE, and in the case of 0=V
produces approximate 1.QG balanced solutions Sand P, such that
S=b=M.1n order to prove it, assume a diagonal weight matrix O

Q= diagq1,), i=1,....n. (24)
then the following is true.

Result 4u. *1’here exist g.2q,;, where ¢, >0,i=1,...,n, such
that S=diag(s;l,) is the solution of (6), u'here

sE@-D/2vt, B 14 2q93/5w, (25)

Pioof is presented in the Appendix.



A similar result is obtained for the FARL equation, namely,
for a diagonal V

V=diagvl,), i=1....n (26)
the following is true:
Result 4b. "Yhere exist visv, where v, > 0,8 1,..., /1, such that

P-diag(pdy) is the solution of (8), where
pEBDI2AY By = 1+ Date, 2
Proof is similar to Resell 2a,

If thei-th diagonal eniry of # and the 1espective entry of
§ arc equal, saytoy;, ie.,

PEsi=n (28)

the i-th component is 1 QG ba|anccd.Addilionally, if § and /I’
are equal, as inEq. (9), where M=diagf), 1= 1,... ,n,the
system is 1.QG balanced. If S, £, M arc diagonally dominant,
lc., Viczs-legt with e, and e small (1e,/v )« 1,
| €:/%, 1 «1), then the system is approximalely | QG balanced.

From Fgs. (25 and (27) it follows that for
Q-diag (g)= V=diag(v), the system is approximately 1 .QG
balanced. Indeed, the balanced CA RI/FARE solution is

S=PoM=diaghy), w=B-1)/7%, 8= 14 2q23/¢w, (29)
Next it is shown that the weight Q
Q= diag(0.0,... .qL... .0,0), gsq,; (30a)

shifts the i th pair  of complex poles of the flexible
structure, and leaves the remaining pairs o f poles almost
unchanged. onty the real part of the pair of poles is changed
(just moving the pole aparl from the imaginary axis and
stabilizing the system), and the imaginary pastof the poles
remains unchanged.

Result Sa. Yorthe weight @ as in Kq.(30a) and g=g,, the
closed- loop pair crf flexible poles (A ;, 1ja;) relates tothe
open loop poles (A, 3jA,;) as follows

1

ori? ol

Qo UADEB, Ao A, i1, n (31a)

v.’here B, is defined in Fq.(25). Yor proof seethe Appendix.

The real parts of the poles are shifled by B, while the
imaginary patt remains unchanged. The above proposition has
additional interpretations.  Note thal  the real part of the
Opel]-roop poleis A, =- -gw, and that the real part of the
closed- loop pole is A,;=-gw,; note also that the height of
the open-loop resonant peak s e,= k/2{w, where « is a
constant, and the closed-loop resonant peaii is a,* '\/ZC Wy
From (31a) onc obtains B, = A /A, heice il is nol difficult
to sce that

Bp'\: cc'\/ci = aui/a\'i (32)

L, that B is a ratio of closed- and open-loop dam Ping
factors, or that it is a ratio of opcn- and  closed 00
resonant  peaks.  Therefore, if a suppression  of  the ith
resonant peak by the factor By is required, the appropriate
weight g, is determined from Fqg (25)

q,50. 52 Dewai? (32)

Note the relatively large 8 even for small g, i.e., a
significant pole shift 10 the Teft. Also, B, increases with
the increase of -r, and decreases with the mereasg of g u,
i.e., there is a significant pole shift for highly observable
and controllable states with small damping.. In terms of the
wransfer  function  profile, the weight g, suppresses the
resonant peak  a t frequency w, white leaving t h e  natural
frequency unchanged. Due to weak coupling between the stales,

the assipnment of 00C pair of stales does not significantly
impacl other states. Thus the weight assignment can be done for
cach pair of states separately.

The estimator poles are shifted in a similar manner. Denote

Vediag(0,0.....v1,, . . .0,0),V5Vei (30b)

then the following is true:

Result 5b. For the weight V as in Yaq. (30b) and wsy, the
estimator pair of poles (A,,42,;) 1<l ales to the open-loop
poles (A,q2fAz;) asfollows

(Ani’ijkeii):‘!(ﬂcikuri’ 1jhuii)' i: \], AN ] (3”’)

where g;is defined in Eq. (27). Proof is similar to Result 2a.

The Nimiting values ¢, andy,; in Results 2a and 2tr are
determined. *1'heir values are rather fuzey numbers, Despile
their fuzziness they arc not difficult to deter mine anyway.
There are several symptoms that g, is approaching g, or that
v, is approaching, v;. Inthe controller case, ¢, is the
weight for which Ihc i-th pair of complex poles of the plant
departs from the horizontal trajectory inthe root locus p dnt,,
or il is the weight for which (hc ith resonant peak of the
planttransfer function disappears (the peak is flattened). And
i the estimator case, w,; is the covariance for which the i-th
pair o f complex poles of the estimator deparls from the
horizontal tiajeclory  in the. root- locus plane, or ii is a
covariance for which the i-thresonant peak of the estimator
transfer function disappears,

5. Rednced-Order Compensator

Jrom an implementation point of view it is crucial to obtain
a compensator of the smallest possible order that preserves the
stability and performance  of the full -order compensator.
Although the size of a plant determines the size of a
compensator, in order to assure the quality of the closed-loop
system, the plant model is not reduced cxccssivc!}' in advance.
Therefore, tbc compensator reduction is a part d compensator
design. The balanced 1 QG d e sign procedure provides this
apportunity,

In order to successfully perform the compensator reduction,
an index of the importance of each compensator component is
introduced. 1uthe open-loop case Hankelsingular values serve
as reduction  indices. . the closedloop case  the
characteristic  values  were used as reduction indices by
Jonckhicere and Silverman (1983). Theyare 001 a good choice,
however, since they do not properly rteflect the effectiveness
of the compensator.

‘The proposed effectiveness of the closed loop system is
evaluated by the degree of damping of flexible motion of the
structure. ‘The damping, on tbc other hand, depends on the pole
mobility 10 the right-hand side of the complex planc.
Therefore, if a particular pair of poles is easily moved (i.e.,
when small weight is requited 10 move the poles), the
respective states are easy to control and 10 estimate, On the
contrary, if a particular pair of poles is difficull to move
(i.e., even a large weight insignificantly moves the poles),
the respective states ave difficult 1o control and 10 estimate,
In the latter case the action of the compensator is irrelevant,
and the states which are difficult to control and estimale can
be reduced; this demonstrates that pole mobilily is a good
indicator of the importance of a particular compensator state.

Consider an 1.QG balanced systein, and denote the pole
mobility index 0; as a product of the a square of Hankel
singular value and the characleristic value of a system

o.= i (34a)
This combines the system observability and  controllability
pm;‘)cnics of the open loop system with the compeasator




performance. The larger the Hankel singular v alu e of the
component, the larger the corresponding mobility index
(cf. Fig.2b), Also, the more heavily wéifited the component,
the larger its pole mobility index (see Fig.2a). In order 10
show thato; is connected wilh the pole mobility, note from
I$s. (29) and (34a) that

o= 0.5(B,-1) (35)
For B,= 1 the i-th pole is stationary, and o; is cqual to zero;
for a shifted pole one obtains 8;> 1 and 0 ;> O. The malrix ¥ of
pole mobility indices is dc.fined

v=diag(oy, 63, . . . . O0y.0,) (341)
and from Q. (34a) one obtains
e (340)

Inthe following, a reduction techni 4 is discussed. Assume
¥ in Eq.(34b) has a descending oracr, i.e., 9% 0,91150;
1= 1,...,n, and dividcit as follows
n= diag(y,, v) (36)
where ¥, consists of first k entries of ¥, and ¥, the remaining
ones. If the entries of & arc small in companson with the
entries of ¥, the compensator is reduced by truncating ils
last n-k slates. Note that the valuc of o ; depends on weight
. and if for a given weighl the resonant peak is too large to
be accepled (or a pair of poles 100 close to the imaginary
axis) the weighting of this particular component should be
increased to damp this parlicular component. The growth (?f
weight increases the value of o ;, which ¢an Save this
particular component from reduction.

Inorder 10 invesligate stability and performance of the
reduced-order compensator, consider the closed-loop sysiem as
in Fig. t. Denoting the slate x,= 7Y €], where €= x-x, onc
obtains the closed loop equations

iu sAx 1B u-1By-18,w, y= Cx, (37a)
wheic
A-BK, BK s i To i
A, [ 0 v AK:C]' B [0] Iiv-'["]. B, = [—l\"]' @37)

C,: [C-C) (370)

I £ the matrices A, B, C be partitioned conformably 10 ¥ in

}iq.(36)
A 0 B,
A'—[o[ A.}' B= [”l]: C= [Cr (“

thenthe reduced compensator.rc,prcscn(alion is (4,, B, 2,). The
compensalor gains arc divided similarly

Kl KY= [KT, KL

(38)

K= [K

1K, (39

and the resuling reduced closed loop syslem is as follows

A-BK~ BK B [n fo ,
Au® [ 0" A.-K..l,(:.]' B~ [0] B> [n.]' B> [l\] (404)

C.=1C -C) (40b)

Although (4,,B,, C) is stable, the stability of the closed-
loop system wili reduced compensator (4,.B.. C,J) is neither
obvious nor guaranteed. But one can delermine when to expect a
stable closcd-loop system with the reduced-order compensator.

In order 10 discuss this question, introduce (38) and (39) to
(37b) to obtain

A-BK, -BK, BK,6 BK,
-BK  A-BK, BK BK
A= Vrpr AL hpr Vipt
o 0 0 A,-K.rC, -K.C, (1)
0 0 'Kcl("r Al' Kd(jll
Consider now theterm BK,
BK,=BHS= [BEYS, BEIS=10 diag(2¢00) (42)

where BE}=diag (2guy), i=- 1,...,q is used. Eq.(42) shows that
for smalle; onc obtains small BK , and in consequence small
BK, and BK .In a similar way Wcanbe shown that K., is
small, Theiefore, for small o; the closed loop maliix as m
Fq.(41) is as follows

A-BK, -BK, B K, BK,

As 0 A, 0 0

Sl o o aKxc o (43)
0 0 -KC A,

which shows that the poles of a truncated system have not hcen
changed significantly, and thatthc poles of the retained
subsystem arc not influenced by the truncated part (negligible
spillover). The system with the reduced compensator is stable.
Of course, " since Yiq.(43) represents an approximation of A, the
above statemenl is not an uncondilional truth, but depends on
the mobility indices. If the reduced-order compensator is
obtained hy reducing states with small ¢;, the re(foccd-older
compensator is expected to be stable. That is, although it is
not guaranteed, there is a well-founded expectation to obtain a
stable redoccd-order compensator.,

in addition to the slabilit wvaluation, the Ic mobility
indices give a good estimate o the performance ¢ the reduced-
order compensator. Namely, try truncating stales with small pole
mobility indices the system  performance  will  not  be
deleriorated significantly. As evidence, note that for 4, as in
Eq. (41) the estimation error is

Er; (A- K., Cl‘b"Kn("l('ll ;:1: K C e, (A K.Ce, (44a)
and from Eq. (43) the error of the redaccd-order compensator is
determined

&= (4K, Cle

e Cu:-K‘lCIl‘“*’A‘(‘" (441’)

It was already shown that K, G0, and K (g0 for small o,
thus e and € &5, e, the. estimation  errors  and
truncation cnorso(‘ the full-order and the rcdacelLl-order
compensators arc almost the same. Similar properties earr be
shown for the controller performance. ‘I'he performance of full-
and reduced order compensalors is compared later in the

application section,

As an allernative measure of performance of the closed-loop
syslem, consider an index n,
w= vk (452)
It is a ratio of the open-loop Hankel singular value 10 the
closed loop Hanke! singular value, and can be also interpreted
as a ratio of variances of open-loop (¢2) and closed loop
(o) states excited by the white-noise input
n= ol/od; (45b)
Obviously, if the i-fh closed-loop variance s
comparison to the i-th open-loop vanance, the controller
action at the i-th staté is considered important, thusthe
state is nol deleted. I Ihc closed-loop variances arc about
the same as the open-loop variances, the controller aclion is

small in




considered marginal, and the state can be deleted without loss
of per formance. In order to determine n, in a closed form the
closed loop 1.yapunov equation is considered

(A-BHYS)I2+ IY(A-BIVSPH BB = O (46a)
or, for the i-th pair of variables
(A: BB + 75 (ABBs)" + BE]=0 (46b)
Introducing Eq. (A.3) from Appendix gives
784 %k, 1550 @7
or,
w = kw1250 = B (48)

thus theratio of closed- and open-loop response to white noise
is equal 10 the pole shifi. Another uscful interpretation
follows from kq.(47)

0= 0.5G%IAY (49)
i.e. the pole mobility index is proportional to relative change
10 while noise response of the open- and closed loop systcms.

6. Applications

A simple 3-degrec-of-freedom system is considered as in
Fig.3, with massesm, =-my—ny= 1, sliffnessk, = 10, k,=3, &, = 4, and
a damping matrix 1= 0. 0&11\’»! 0. 001M, where K, M are sti ffness and
mass matrices, respectively. The input force is applied to the
mass my; the output is the rate of the same mass, and the poles
of the open-loop system arc A, .= - O. 00243j0. 9851, A3 4 = -
0.01754j2. 9197, and A o5 =- -0.0. 5511'3.8084. The weight matrix 0
and the covariance matrix V ar¢ chosen as follows:
Q- V:=diag(0.4,0.4, 2, 2, 6, 6). Vhe nonzero enh ics of O and V
shift the poles to the right, so that the peaks in the closed -
loop transfer function are flattened as in Fig.4. The matrix V
is chosen to be equal to (toobtain a balanced 1QG
compensator. For these matrices the solution S of CARE and the
solution P of AR} are equal and diagonally dominant,

S=P=M=diag(l.3288, 1.3261, 4.3161, 4.1301,25.2817, 24.01$0),

and the corresponding gains arc sign-symmettic (Jonckheere and
Silverman, 1983)

k,=10.0039, 0.889.3, 0.2978, -1.9291, 2.1378, -2. 1636}
k}=[-0,0()39,0-8893,~0.2978.-1-9291. -2.1378, -2. 1636]

‘The Hankel matrix of the plant is

r= diag(7. 9776, 7.9776, 2.2.337, 2.3336, 0. 4893.0.48$0)
thus the matrix 3 is obtained

)Iﬁ(/i{lg(&’l. 5658, 84.3920, 21..5332, 20.6058, 6.0153, 5. 7586)

Poles of the open-loop plant, closed-loop systems a n d
estimator arc shown in Fig5. The closed-loop poles and
estimator poles were shifted horizontally with respect (o the
open-loop poles! in agreement with the Results 2a and 2b, For
thc chosen weights the projected (froml"q- (32)) and actual
shifts are 137 vs 146 for the first pair of poles, 33 vs 34 for
the second pair of poles, and 8.5 vs 10 for the third pair of
poles. Moreover, since thecapensalor is balanced, the poles
of the closed loop system an the estimator overlap. ‘the.
closed-loop impulse response in ¥ig.6 (solid line), shows good
vibration damping properties, which is also confirmed try the
closed-hop transfer function, Fig.4 (dashed line). The
compensator is reduced from six to four state variables. The
truncated states are related to the smallest diagonal eutries
(5. 7586, 6. 0453) of £. The impulse response of the full and
rcducc{i-order compensator are¢ compared in Fig.6, showing good

coincidence. However, if the two states corresponding to the
medium values of £ ( 20.6058, 21.5.332) arc. deleted, the
performance of the reduced-order compensator is significantly
deteriorated, and if the slates corresponding to the largest
entries of ¥ arc reduced, the compensator is unstable.

Next, the application of the 1.QG compensator to the truss
structure from Fig.7 is investigated. For this structure ;=70
in., &= 100 in., eachlruss has a cross-scction area of 2 in.?,
clastic modulus of 108 Wb/in. 2, and massdensity of 2 |
sec?/in. 2, Vertical control forces are applied atnodes nal and
na2, and the owtput roles are measured in the vertical
direction at nodes nol and no2, The system has 26 states (13
balanced components), two inputs, and two outputs, The weight
(0) and covariance (V) matrices are assured equal and diagonal,

0= V=diag(q,,9,,97:.G3. . 3,513, where q,= 200,-9, - 47-0 0 ,
0y 1000, 032 20000 5o 16000, B 20000, g o =380, The

CARE and FARE solutions are diagonally dominant, so that the
resulting matrix & i s diagonally dominant. The plots o f
diagonal entries o f % are plotted in Fig.8, Poles o f (e
open-loop structure as well the closed-loop system and the
estimator are shown in Fig.9. For the balanced compensator the
pole.s of the closed-loop system and the eslimator overlap. The
open-loop transfer functions arc shown in Fig. 10 (solid ling)
and the closed loop transfer functions of the plant and
estimator overlap in Fig. 10 (dashed line), and show that the
Oscillatory motion of the structure is damped gyy, The
compensator is reduced by truncating the 14 states, which
correspond 10 the small pole mobility indices 0,<0.5. The
resulting reduced-order compensator has 12 states, The impulse
responses of the full and reduced-order compensator are
compared in Fig. 11, showing good coincidence.

7. Conclusions

The properties of Moore balanced representation of flexible
structures have been extended for the closet-loop systems. A
balanced 1.QG compensator i s obtained that pays the same
atlention to controlling and to estimating the system. The
properties of the balanced 1.QG system arc used to obtain a
rcduccd-order compensator thal preserves fhe ctahility and
performance of the full-order compensator, as illustrated with
the 1.QG balanced control of a truss structure. since 1 QG
balancing and Moore open-foop balancing coincide for flexible
structures, the open-loop reduction (based on Moore balancing)
and the 1.QG reduction form a unified approach to system
reduction, useful duc to ils simplicity.
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Appendix. Proofs

Proof of Result 4a. For a flexible system with n components (or
N: 2n slates),thebalanced grammian has the following form (sce

Gawronski and Juang, 1990; Gawronski and Williams, 1991)
Tediag(v,,v1,92,90.-2,,7,), (A])

and the matrix A is almost block-diagonal, with dominant 2x2
blocks on the main diagonal

Asdiag(A), A= T‘:' :! i den (A.2)
4

where o, is the i-th natural frequency, and ¢; is the i-th
modal damping. introducing Fgs.(A.1) and (A.2) to (1) gives

sHAA A= BHTE-CIC, %)

Due to diagonally dominant matrix .4 for a flexible structure in
balanced representalion, and for Q as in Eq. (24), there exist
435G i= 1,...m, such that the solution S Of the Riccati
equation (6) is also diagonally dominant with 2x2 blocks S; on
the main diagonal

Sesh, 85 >0, i=1,...,n (A.4)
Thus, equation (6) terns into a set of the following equations

SAAAN)-SIBAgl=0 =1 0 (A.5)

For a balanced svslcmlilﬂz A¥/4 +. A7), see Bg. (A.3), and
A AT=-2¢ul,, see Fyq. (A. ) Therefore Eq. (A.S) is now

stisfajo. Sgkwai=-0, =1, n. (A.6)
“1'here arc iwo solutions of Yg. (A ,6), bul for a stable system
and for @;= O it is required lhalsi-—o, therefore (25) is the
unique solution of Fq. (A.6).

Proof of Result Sa. Yor small g; the matrix A of lhc closed-
loop systein is diagonally dominant 4 Ldiag(A,),i= 1. ,n,and
A= A-B RV, introducing Eq.(A.3) onc obtains

AEAA 253344 A7), (A7)
and introducing A, as in Eq.(A.2) 10 Eq.(A.7) onc obtains
- 'ﬁpiciwn -,
A= [ o, >B,.;ciw.J' (A, 8)

with By as in Eq. (25).
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Fig. 1, Block diagram of flex. structure with1.QG compensator.
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Fig.3. simple flexible system.
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